Abstract
The primary goal of this paper is to create a new fractional boundary element method (BEM) model for bio-thermomechanical problems in functionally graded anisotropic (FGA) nonlinear viscoelastic soft tissues. The governing equations of bio-thermomechanical problems are briefly presented, including the fractional dual-phase-lag (DPL) bioheat model and Biot’s model. The more complex shapes of nonlinear viscoelastic soft tissues can be handled by the boundary element method, which also avoids the need for the interior domain to be discretized. The fractional dual-phase-lag bioheat equation was solved using the general boundary element method (GBEM) based on the local radial basis function collocation method (LRBFCM). The poroelastic fields are then calculated using the convolution quadrature boundary element method (CQBEM) The numerical findings show that our proposed numerical model is valid, efficient, and accurate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.