Abstract
We examine the existence and stability of nonlinear discrete vortex solitons in a square lattice when the standard discrete Laplacian is replaced by a fractional version. This creates a new, to the best of our knowledge, effective site-energy term, and a coupling among sites, whose range depends on the value of the fractional exponent $\alpha$, becoming effectively long range at small $\alpha$ values. At long distance, it can be shown that this coupling decreases faster than exponentially: $\sim\exp (- |{\textbf{n}}|)/\sqrt {|n|}$. In general, we observe that the stability domain of the discrete vortex solitons is extended to lower power levels, as the $\alpha$ coefficient diminishes, independently of their topological charge and/or pattern distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.