Abstract

Neural systems adapt to changes in stimulus statistics. However, it is not known how stimuli with complex temporal dynamics drive the dynamics of adaptation and the resulting firing rate. For single neurons, it has often been assumed that adaptation has a single time scale. Here, we show that single rat neocortical pyramidal neurons adapt with a time scale that depends on the time scale of changes in stimulus statistics. This multiple time scale adaptation is consistent with fractional order differentiation, such that the neuron’s firing rate is a fractional derivative of slowly varying stimulus parameters. Biophysically, even though neuronal fractional differentiation effectively yields adaptation with many time scales, we find that its implementation requires only a few, properly balanced known adaptive mechanisms. Fractional differentiation provides single neurons with a fundamental and general computation that can contribute to efficient information processing, stimulus anticipation, and frequency independent phase shifts of oscillatory neuronal firing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.