Abstract

In this research paper, we discuss the complex-valued solutions for the nonlinear fractional boundary value problem (FBVP) of complex order (δ = τ + ιa; 1 < τ ≤ 2, a ∈ R+) with movable boundary conditions. The fractional operators are taken in the sense of Riemann-Liouville (R-L) with complex order. By using the concept of Green’s function, the existence and uniqueness of solutions are established in this article. Also, we prove that the FBVP of complex order with movable boundary conditions is Ulam-Hyers Stable. Using illustrative examples, the results for this nonlinear FBVP have been shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.