Abstract

A brief report is made of current laboratory investigations on phase relations among olivine, pyroxene, anorthite, magnetite, tridymite, liquid and gas in the system Mg2SiO4-CaAl2Si2O8-FeO-Fe2O2-SiO2 over a wide range of oxygen partial pressures. Courses of fractional crystallization under various conditions of oxygen partial pressure are depicted using an anorthite saturation diagram. Starting with a basalt-like composition in the system, fractional crystallization at a moderate oxygen partial pressure (10 atm.) results in an andesite-like residual liquid of composition 55 SiO2, 14 iron oxide, 6 MgO, 9 CaO, 16 Al2O3 at a temperature of 1155°C. With fractional crystallization in a closed system, the end liquid approaches the composition of 45 SiO2, 38 iron oxide, 6 CaO and 11 Al2O3, at a temperature of 1050°C and oxygen partial pressure of about 10−12 atm. The andesitic final liquid in this system would be expected to further differentiate toward dacitic and rhyolitic compositions if alkalies and water were present in the system. On the basis of these studies, the derivation of liquids of andesitic, dacitic or rhyolitic composition from primary basalts by fractional crystallization seems entirely possible if the oxygen partial pressure is maintained at a moderate or high level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call