Abstract

Fractional crystallization of basaltic magma at variable depths influences strongly the geochemical compositions of mid-ocean ridge basalts (MORBs), especially at slow-spreading mid-ocean ridges. The Carlsberg Ridge is a typical slow-spreading ridge located in the northwestern Indian Ocean. In this study, we conducted petrological, geochemical and modelling studies of MORBs collected along the Carlsberg Ridge from 57°–65°E to understand the fractional crystallization processes of magma and the controls on variations in MORB geochemistry. Our results show that the mantle sources beneath the Carlsberg Ridge are heterogeneous even on the local scale of a segment; such heterogeneity may be ubiquitous beneath the Carlsberg Ridge. Mantle heterogeneity may be caused by the enriched components resulting in the “DUPAL” anomaly, whereas the effect of pyroxenite on mantle heterogeneity is negligible. The parental melts experienced crystallization of olivine, plagioclase and clinopyroxene prior to eruption, which played a significant role in the major and trace element variations in MORBs from the Carlsberg Ridge. The liquid lines of descent (LLDs), deduced from the forward modelling of three parental magma compositions using the Petrolog3 program at pressures between 1 atm and 10 kbar, demonstrate that clinopyroxene joined the olivine and plagioclase cotectic. The over-enrichment in highly incompatible elements relative to LLDs may be caused by the processes of replenishment-tapping-crystallization in magma chambers. The calculated crystallization pressures suggest that parental magmas beneath the Carlsberg Ridge experienced moderate-to high-pressure crystallization and that crystallization beneath the slow-spreading Carlsberg Ridge may start at upper mantle depths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call