Abstract
The carbonatites of Brava Island, Cape Verde hot spot, allow to investigate whether they represent small mantle melt fractions or form through extreme fractionation and/or liquid immiscibility from CO2-bearing silicate magmas. The intrusive carbonatites on Brava Island are part of a strongly silica-undersaturated pyroxenite, ijolite, nephelinite, nepheline syenite, combeite–foiditite, carbonatite series. The major and trace element composition of this suite is reproduced by a model fractionating olivine, clinopyroxene, perovskite, biotite, apatite, titanite, sodalite and FeTi oxides, all present as phenocrysts in the rocks corresponding to their fractionation interval. Fractionation of ~90 wt% crystals reproduces the observed geochemical trend from the least evolved ultramafic dikes (bulk X Mg = 0.64) to syenitic compositions. The modelled fractional crystallization leads to alkali enrichment, driving the melt into the carbonatite–silicate miscibility gap. An initial CO2 content of 4000 ppm is sufficient to saturate in CO2 at the point where the rock record suggests continuing unmixing carbonatites from nephelinites to nepheline syenites after 61 wt% fractionation. Such immiscibility is also manifested in carbonatite and silicate domains on a hand-specimen scale. Furthermore, almost identical primary clinopyroxene, biotite and carbonate compositions from carbonatites and nephelinites to nepheline syenites substantiate their conjugate character and our unmixing model. The modelled carbonatite compositions correspond to the natural ones except for their much higher alkali contents. The alkali-poor character of the carbonatites on Brava and elsewhere is likely a consequence of the release of alkali-rich CO2 + H2O fluids during final crystallization, which cause fenitization in adjacent rocks. We propose a general model for carbonatite generation during alkaline magmatism, where the fractionation of heavily Si-undersaturated, alkaline parent melts results in alkali and CO2 enrichment in the evolving melt, ultimately leading to immiscibility between carbonatites and evolved Si-undersaturated alkaline melts. Early saturation in feldspathoids or feldspars would limit alkali enrichment preventing the formation of carbonatites. The complete and continuous fractionation line from almost primitive melts to syenitic compositions on Brava underlines the possibly important role of intrusives for hot spot volcanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.