Abstract

It is possible to view communication complexity as the solution of an integer programming problem. The authors relax this integer programming problem to a linear programming problem, and try to deduce from it information regarding the original communication complexity question. This approach works well for nondeterministic communication complexity. In this case the authors get a special case of Lovasz's fractional cover measure and use it to completely characterize the amortized nondeterministic communication complexity. In the case of deterministic complexity the situation is more complicated. The authors discuss two attempts, and obtain some results using each of them.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.