Abstract
Theoretical and numerical studies of fractional conformable stochastic integrodifferential equations are introduced in this study. Herein, to emphasize the solution’s existence, we provide proof based on Picard iterations and Arzela−Ascoli’s theorem, whilst the proof of the uniqueness mainly depends on the famous Gronwall’s inequality. Also, we introduce the basic concepts related to shifted Legendre orthogonal polynomials which are utilized to be the basic functions of the spectral collocation algorithm to obtain approximate solutions for the mentioned equations that are not easy to be solved analytically. The substantial idea of the proposed algorithm is to transform such equations into a system containing a finite number of algebraic equations that can be treated using familiar numerical methods. For computational aims, we make a suitable discretization to evaluate the values of the Brownian motion, the noise term considered in our problem, at specific points. In addition, the feasibility and efficiency of the proposed algorithm are proved through convergence analysis and mathematical examples. To exhibit the mathematical simulation, graphs and tables are lucidly shown. Obviously, the physical interpretation of the displayed graphics accurately describes the behavior of the solutions. Despite the simplicity of the presented technique, it produces accurate and reasonable results as notarized in the conclusion section.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.