Abstract

We review various features of interacting Abelian topological phases of matter in two spatial dimensions, placing particular emphasis on fractional Chern insulators (FCIs) and fractional topological insulators (FTIs). We highlight aspects of these systems that challenge the intuition developed from quantum Hall physics—for instance, FCIs are stable in the limit where the interaction energy scale is much larger than the band gap, and FTIs can possess fractionalized excitations in the bulk despite the absence of gapless edge modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call