Abstract

Fractional Cauchy problems replace the usual first-order time derivative by a fractional derivative. This paper develops classical solutions and stochastic analogues for fractional Cauchy problems in a bounded domain DR d with Dirichlet boundary conditions. Stochastic solutions are constructed via an inverse stable subordi- nator whose scaling index corresponds to the order of the fractional time derivative. Dirichlet problems corresponding to iterated Brow- nian motion in a bounded domain are then solved by establishing a correspondence with the case of a half-derivative in time. 1. Introduction. In this paper, we extend the approach of Meerschaert and Scheffler ( 23) and Meerschaert et al. (24) to fractional Cauchy problems on bounded domains. Our methods involve eigenfunction expansions, killed Markov processes and inverse stable subordinators. In a recent related paper (7), we establish a connection between fractional Cauchy problems with index β = 1/2 on an unbounded domain, and iterated Brownian motion (IBM), defined as Zt = B(|Yt|), where B is a Brownian motion with values in R d and Y is an independent one-dimensional Brownian motion. Since IBM is also the stochastic solution to a Cauchy problem involving a fourth-order derivative in space (2, 14), that paper also establishes a connection between certain higher-order Cauchy problems and their time-fractional analogues. More generally, Baeumer, Meerschaert and Nane (7) shows a connection between fractional Cauchy problems with β = 1/2 and higher-order Cauchy problems that involve the square of the generator. In the present paper, we

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.