Abstract

This paper aims to develop fractional interval-valued calculus on time scales that unify the continuous and discrete cases. The definitions of fractional interval-valued calculus, which encompass the integral, Riemann–Liouville (R-L) derivative, and Caputo derivative of nabla type, are established within the framework of time scales. Moreover, some fundamental properties and nabla Laplace transform of these new operators are discussed. Based on these findings, explicit solutions of several nabla fractional interval-valued differential equations on time scales are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.