Abstract
The application of fractal random process models and their related scaling parameters as features in the analysis and segmentation of clutter in high-resolution, polarimetric synthetic aperture radar (SAR) imagery is demonstrated. Specifically, the fractal dimension of natural clutter sources, such as grass and trees, is computed and used as a texture feature for a Bayesian classifier. The SAR shadows are segmented in a separate manner using the original backscatter power as a discriminant. The proposed segmentation process yields a three-class segmentation map for the scenes considered in this study (with three clutter types: shadows, trees, and grass). The difficulty of computing texture metrics in high-speckle SAR imagery is addressed. In particular, a two-step preprocessing approach consisting of polarimetric minimum speckle filtering followed by noncoherent spatial averaging is used. The relevance of the resulting segmentation maps to constant-false-alarm-rate (CFAR) radar target detection techniques is discussed.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.