Abstract

In this paper, stochastic differential equations in a Hilbert space with a standard, cylindrical fractional Brownian motion with the Hurst parameter in the interval (1/2,1) are investigated. Existence and uniqueness of mild solutions, continuity of the sample paths and state space regularity of the solutions, and the existence of limiting measures are verified. The equivalence of the probability laws for the solution evaluated at different times and different initial conditions and the convergence of these probability laws to the limiting probability are verified. These results are applied to specific stochastic parabolic and hyperbolic differential equations. The solution of a specific parabolic equation with the fractional Brownian motion only in the boundary condition is shown to have many results that are analogues of the results for a fractional Brownian motion in the domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.