Abstract
In this paper, we present a fractional version of the Sakiadis flow described by a nonlinear two-point fractional boundary value problem on a semi-infinite interval, in terms of the Caputo derivative. We derive the fractional Sakiadis model by substituting, in the classical Prandtl boundary layer equations, the second derivative with a fractional-order derivative by the Caputo operator. By using the Lie symmetry analysis, we reduce the fractional partial differential equations to a fractional ordinary differential equation, and, then, a finite difference method on quasi-uniform grids, with a suitable variation of the classical L1 approximation formula for the Caputo fractional derivative, is proposed. Finally, highly accurate numerical solutions are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.