Abstract

Fractional band-pass filters are a promising area in the signal processing. They are especially attractive as a method for processing of biomedical signals, such as EEG, where large signal distortion is undesired. We present two structures of fractional band-pass filters: one as an analog of classical second-order filter, and one arising from parallel connection of two fractional low-pass filters. We discuss a method for filter implementation — Laguerre Impulse Response Approximation (LIRA) — along with sufficient conditions for when the filter can be realized with it. We then discuss methods of filter tuning, in particular we present some analytical results along with optimization algorithm for numerical tuning. Filters are implemented and tested with EEG signals. We discuss the results highlighting the possible limitations and potential for development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.