Abstract

Quadrotors are Unmanned Aerial Systems (UAS), whose nonlinearities, uncertainties, and unavoidable aerodynamic disturbances stand for a difficult control problem. Additionally, the highly nonlinear coupling between the position and the orientation dynamics exacerbates the underactuation problem when the objective is the position tracking. In this paper, aiming at designing a robust position controller without resolving underactuation, a novel “reactive orientation control” is proposed. The orientation controller is model-free and it is build upon differintegral fractional operators to react to a continuous and bounded additive term that stands for an affine exogenous position controller. Such term indeed becomes an attitude disturbance that is purposely injected to displace the quadrotor towards the desired position of the underactuated coordinates. The closed-loop analysis shows that the norm of the transfer function between the disturbance and the position tracking error is minimized for a stable and robust position regime. Simulations and experimental results are given to discuss the feasibility of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.