Abstract

PurposeAlthough functional magnetic resonance imaging (fMRI) has revealed that spinal cord injury (SCI) causes anomalous changes in task-induced brain activation, its effect during the resting state remains unclear. The aim of this study is to explore the changes of the brain resting-state function in non-human primates with unilateral SCI. Materials and methodsEleven adult female rhesus monkeys were subjected to resting-state fMRI: five with unilateral thoracic SCI and six healthy monkeys, to obtain the fractional amplitude of low-frequency fluctuations (fALFF) of the blood oxygenation level-dependent (BOLD) contrast signal to determine the influence of SCI on the cerebral resting-state function. ResultsThe SCI-induced fALFF vary significantly in several encephalic regions, including the left cerebellum, the left thalamus, the right lateral geniculate nucleus, the right superior parietal lobule, and the posterior cingulate gyrus. ConclusionAnalysis of the resting-state fMRI provides evidence of abnormal spontaneous brain activations in primates with SCI, which may help us understand the pathophysiologic mechanisms underlying the changes in neural plasticity in the central nervous system after SCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call