Abstract

Clustering data streams has become a hot topic and has been extensively applied to many real-world applications. Compared with traditional clustering, data stream clustering is more challenging. Adaptive Resonance Theory (ART) is a powerful (online) clustering method, it can automatically adjust to learn both abstract and concrete information, and can respond to arbitrarily large non-stationary databases while having fewer parameters, low computational complexity, and less sensitivity to noise, but its limited feature representation hinders its application to complex data streams. In this paper, considering its advantages and disadvantages, we present its flexible extension for stream clustering, called fractional adaptive resonance theory (FRA-ART). FRA-ART enhances data representation by fractionally exponentiating input features using self-interactive basis functions (SIBFs) and incorporating feature interaction through cross-interactive basis functions (CIBFs) at the cost only of introducing an additionally adjustable fractional order. Both SIBFs and CIBFs can be precomputed using existing algorithms, making FRA-ART easily adaptable to any ART variant. Finally, comparative experiments on five data stream datasets, including artificial and real-world datasets, demonstrate FRA-ART’s superior robustness and comparable or improved performance in terms of accuracy, normalized mutual information, rand index, and cluster stability compared to ART and the state-of-the-art G-Stream algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.