Abstract

The fraction of absorbed photosynthetically active radiation (FAPAR) is a vegetation biophysical variable that characterizes energy, mass, and momentum exchanges and is used extensively in models that represent the transfer of energy, carbon, water, and the biogeochemistry of terrestrial ecosystems. This paper compares three estimates of FAPAR by an Amazonian tropical rain forest. In the Tapajós National Forest, near Santarém, state of Pará, Brazil, FAPAR is estimated based on field measurements, modeling (using IBIS which simulates the fluxes in the soil‐vegetation‐atmosphere system considering two vegetation layers) and remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) monthly FAPAR product, which has not been validated for a tropical rain forest yet. FAPAR based on field observations is calculated from incoming and reflected PAR measurements taken above the canopy, and downward PAR at a 15 m height, corrected to be representative of the entire canopy, obtaining an annual mean value of 0.91. FAPAR simulated by the Integrated Biosphere Simulator (IBIS) is 0.76, while the annual average FAPAR estimated by MODIS is 0.85. If we consider that MODIS estimates include only PAR absorbed by leaves, the remote sensing estimates are very close to field measurements corrected to include only the absorption by leaves (0.87); hence we conclude that the MODIS FAPAR product for the tropical rain forest is reliable to be used in future studies. However, model estimates of FAPAR for the tropical forest are low, and adjustments on the algorithm used to calculate the absorbed radiation by the canopy are necessary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.