Abstract
In this study we investigate the potential of fraction images derived from a linear spectral mixture model to detect vegetation phenology in Amazonia, and evaluate their relationships with the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices. Time series of MODIS 250-m data over three contrasting land cover types in the Amazon were used in conjunction with rainfall data, a land cover map and a forest inventory survey to support the interpretation of our findings. Each vegetation physiognomy was characterized by a particular intra-annual variability detected by a combination of the fraction images. Both vegetation and shade fractions were important to evaluate the seasonality of the open tropical forest (OTF). The association of these results with forest inventory data and the literature suggests that Enhanced Vegetation Index (EVI) and vegetation fraction images are sensitive to structural changes in the canopy of OTF. In cerrado grassland (CG) the phenology was better characterized by combined soil and vegetation fractions. Soybean (SB) areas were characterized by the highest ranges in the vegetation and soil fraction images. Vegetation fraction and vegetation indices for the OTF showed a significant positive relationship with EVI but not with Normalized Difference Vegetation Index (NDVI). Significant relationships for vegetation fraction and vegetation indices were also found for the CG and soybean areas. In contrast to vegetation index approaches to monitoring phenology, fraction images provide additional information that allows a more comprehensive exploration of the spectral and structural changes in vegetation formations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.