Abstract

In this paper we propose a new technique for designing feedback control of a DC motor speed using fractional order proportional-integral-derivative (FOPID controller). DC motor is often used in robotics and other fields of control and therefore speed control is very important. FOPID controller's parameters are composed of the proportionality constant, integral constant, derivative constant, derivative order and integral order, and its design is more complex than that of conventional integer-order proportional-integral-derivative (PID) controllers. Here the controller synthesis is formulated as a single objective optimization problem and based on Integral Time Absolute Error (ITAE) criterion. A modified Artificial Bee Colony Algorithm is been used to tune the FOPID controller parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.