Abstract

In this brief, we present FracTCAM, an efficient methodology for ternary content addressable memory (TCAM) emulation on Xilinx field-programmable gate arrays (FPGAs) by leveraging primitive architectural resources. The proposed methodology exploits the fracturable nature of lookup table random access memories (LUTRAMs) and built-in slice flip-flops for deeper pipelining. Multiple slices can be combined together to build deeper and wider TCAMs using ANDing operations. This results in TCAM implementations that achieve lower resources utilization, lower delay, and power consumption. A comparison with the existing schemes shows that FracTCAM consistently achieves the best performance per area (PA) and performance per area per watt (PAW).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.