Abstract

The self-similarity properties of fractals are studied in the framework of the theory of entire analytical functions and the q-deformed algebra of coherent states. Self-similar structures are related to dissipation and to noncommutative geometry in the plane. The examples of the Koch curve and logarithmic spiral are considered in detail. It is suggested that the dynamical formation of fractals originates from the coherent boson condensation induced by the generators of the squeezed coherent states, whose (fractal) geometrical properties thus become manifest. The macroscopic nature of fractals appears to emerge from microscopic coherent local deformation processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.