Abstract
A numerical model is proposed to simulate fracture induced by the coalescence of numerous microcracks, in which the condition for coalescence between two randomly nucleated microcracks is determined in terms of a load-sharing principle. The results of the simulation show that, as the number density of nucleated microcracks increases, stochastic coalescence first occurs followed by a small fluctuation, and finally a newly nucleated microcrack triggers a cascade coalescence of microcracks resulting in catastrophic failure. The fracture profiles exhibit self-affine fractal characteristics with a universal roughness exponent, but the critical damage threshold is sensitive to details of the model. The spatiotemporal distribution of nucleated microcracks in the vicinity of critical failure follows a power-law behaviour, which implies that the microcrack system may evolve to a critical state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.