Abstract
For asymptotically hyperbolic manifolds with hyperbolic trapped sets we prove a fractal upper bound on the number of resonances near the essential spectrum, with power determined by the dimension of the trapped set. This covers the case of general convex cocompact quotients (including the case of connected trapped sets) where our result implies a bound on the number of zeros of the Selberg zeta function in disks of arbitrary size along the imaginary axis. Although no sharp fractal lower bounds are known, the case of quasifuchsian groups, included here, is most likely to provide them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.