Abstract

We prove a Weyl upper bound on the number of scattering resonances in strips for manifolds with Euclidean infinite ends. In contrast with previous results, we do not make any strong structural assumptions on the geodesic flow on the trapped set (such as hyperbolicity) and instead use propagation statements up to the Ehrenfest time. By a similar method we prove a decay statement with high probability for linear waves with random initial data. The latter statement is related heuristically to the Weyl upper bound. For geodesic flows with positive escape rate, we obtain a power improvement over the trivial Weyl bound and exponential decay up to twice the Ehrenfest time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.