Abstract
Fermat–Wiener index based on topological Wiener index is the total sum of Fermat distance over all the triplets for vertices. In this paper, we construct a class of hierarchical graphs based on hierarchical product generalized from Cartesian product. We study some critical properties of the hierarchical networks by investigating its topological indices. Applying the finite pattern method, we analytically deduce the dominant term of average Fermat distance and obtain its asymptotic formula, which implies small-world property. We finally exhibit a close connection between Fermat–Wiener index and related graph invariants like average geodesic distance, Wiener index and eigenvalues of Laplacian matrix.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.