Abstract

BackgroundProgramming a mechanical ventilator with a biologically variable or fractal breathing pattern (an example of 1/f noise) improves gas exchange and respiratory mechanics. Here we show that fractal ventilation increases respiratory sinus arrhythmia (RSA) – a mechanism known to improve ventilation/perfusion matching.MethodsPigs were anaesthetised with propofol/ketamine, paralysed with doxacurium, and ventilated in either control mode (CV) or in fractal mode (FV) at baseline and then following infusion of oleic acid to result in lung injury.ResultsMean RSA and mean positive RSA were nearly double with FV, both at baseline and following oleic acid. At baseline, mean RSA = 18.6 msec with CV and 36.8 msec with FV (n = 10; p = 0.043); post oleic acid, mean RSA = 11.1 msec with CV and 21.8 msec with FV (n = 9, p = 0.028); at baseline, mean positive RSA = 20.8 msec with CV and 38.1 msec with FV (p = 0.047); post oleic acid, mean positive RSA = 13.2 msec with CV and 24.4 msec with FV (p = 0.026). Heart rate variability was also greater with FV. At baseline the coefficient of variation for heart rate was 2.2% during CV and 4.0% during FV. Following oleic acid the variation was 2.1 vs. 5.6% respectively.ConclusionThese findings suggest FV enhances physiological entrainment between respiratory, brain stem and cardiac nonlinear oscillators, further supporting the concept that RSA itself reflects cardiorespiratory interaction. In addition, these results provide another mechanism whereby FV may be superior to conventional CV.

Highlights

  • Programming a mechanical ventilator with a biologically variable or fractal breathing pattern improves gas exchange and respiratory mechanics

  • Data were pooled for baseline and oleic acid time periods to demonstrate the nature of the lung injury

  • Over the measurement period, tidal volume was modestly higher with Fractal Ventilation (FV) than Conventional Ventilation (CV); 225 mL versus 204 mL respectively (p = 0.039)

Read more

Summary

Introduction

Programming a mechanical ventilator with a biologically variable or fractal breathing pattern (an example of 1/f noise) improves gas exchange and respiratory mechanics. We show that fractal ventilation increases respiratory sinus arrhythmia (RSA) – a mechanism known to improve ventilation/perfusion matching. The increase in heart rate with inspiration and decrease with expiration – is one component of this complexity. It represents a dynamic interaction between respiratory, brain stem and cardiac oscillators that is physiologically advantageous. Hayano et al.[5]showed in dogs that positive RSA is associated with lower shunt fraction and lower dead space ventilation. Negative RSA – a decrease in heart rate with inspiration and increase with expiration – increases shunt fraction and dead space ventilation.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call