Abstract

The discrete Fourier transform(DFT) is used for fractional Brownian motion(FBM) surface synthesis in tribology(i.e., contact, sliding, and sealing, etc). However, the relationship between fractal parameters(fractal dimension and scale factor) and traditional parameters, the influence of fractal parameters on surface appearance, have not been deeply discussed yet. These lead to some kind of difficulty to ensure the synthesized surfaces with ideal fractal characteristic, required traditional parameters and geometric appearance. A quantitative relationship between fractal parameters and the root mean square deviation of surface (Sq) is derived based on the energy conservation property between the space and frequency domain of DFT. Under the stability assumption, the power spectrum of a FBM surface is composed of concentric circles strictly, a series of FBM surfaces with prescribed Sq could be synthesized with given fractal dimension, scale factor, and sampling numbers, but the ten-point height(Sz), the skewness(Ssk) and the kurtosis(Sku) are still in random, where the probability distributions of Sz and Ssk are approximately normal distribution. Furthermore, by iterative searching, a surface with desired Abbott-Firestone curve could be obtained among those surfaces. An intuitive explanation for the influence of fractal dimension and scale factor on surface appearance is obtained by discussing the effects on the ratio of energy between high and low frequency components. Based on the relationship between Sq and surface energy, a filtering method of surface with controllable Sq is proposed. The proposed research ensures the synthesized surfaces possess ideal FBM properties with prescribed Sq, offers a method for selecting desired Abbott-Firestone curve of synthesized fractal surfaces, and makes it possible to control the Sq of surfaces after filtering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.