Abstract

A method to create a differentiable complex shapes from simple polygonal models is proposed. It is shown that classical schemes of “smooth” subdivision can be obtained from local self-similarity ratios if “deflection arrows” are scaled as s2, where s is the linear compression coefficient calculated for a flat regular grid of the same structure. The surfaces obtained by a smooth subdivision do not contain sharp features other than the vertices and edges of the original model, so in order to create a surface of more exotic shape one must use more complex model. The article describes an alternative approach, in which a fractal forecast of the position of embedded vertices, calculated using the local geometric self-similarity ratio, is used to obtain a pronounced surface shape. Fractal forecast transfers the properties of the original polygonal model to a smaller scale, thereby generating secondary sharp surface features that compose a large-scale texture. To ensure the differentiability of the surface, the fractal forecast is combined with the “smooth” one, and the proportion of the latter increases with decreasing scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.