Abstract

In this second part of our study on fractal co-electrochemical deposition, we investigate the Cu-Zn system. Macroscopic and microscopic inspection shows a sensitive dependence of the morphology of the final pattern on initial concentrations. The pattern is seen to undergo a transition from classical dendrites to randomly ramified deposits, with each slight increase in [Cu(2+)](0), while [Zn(2+)](0) is maintained constant. The variational trends in chemical composition, growth velocity, and fractal dimension with increasing [Cu(2+)](0) are analyzed. The latter is seen to generally increase with copper (II) ion concentration. In contrast, the growth rate of the deposits is seen to decrease with increasing concentration of Cu(2+) ions. A new probe of dense ramified morphology, the pattern density, is introduced and seen to increase with [Cu(2+)](0). XRD measurements reveal that the observed properties correlate with the birth of copper-rich nuclei, which disrupt the crystalline anisotropy of the two-metal alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.