Abstract
Modern industrial materials are often required to have excellent comprehensive properties. Contact wire used in high-speed train needs possess high strength and toughness, high conductivity and wear resistance, which are often trade-off with each other. In this work, we constructed a fractal structure with high-density nano-precipitates in CuCrZr alloy via rotary swage plus aging, and break the strength, conductivity and ductility limits of existing Cu alloys. The CuCrZr alloy exhibits unprecedented comprehensive properties of a high ultimate tensile strength of 626 MPa, a ductility of 19% and an electrical conductivity of 82% international annealed copper standard (IACS). Microstructural analysis indicates that the fractal structure and high-density nano-Cr precipitates block and accumulate dislocations, but allow electrons to flow unimpededly along the axis of CuCrZr wire, resulting in the high toughness and conductivity. Our finding verifies fractal structure has the potential to obtain materials with super excellent comprehensive properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.