Abstract

Heart beat fluctuations exhibit temporal structure with robust long-range correlations, fractal and nonlinear features, which have been found to break down with pathologic conditions, reflecting changes in the mechanism of neuroautonomic control. It has been hypothesized that these features change and even break down also with advanced age, suggesting fundamental alterations in cardiac control with aging. Here we test this hypothesis. We analyze heart beat interval recordings from the following two independent databases: 1) 19 healthy young (average age 25.7 yr) and 16 healthy elderly subjects (average age 73.8 yr) during 2 h under resting conditions from the Fantasia database; and 2) 29 healthy elderly subjects (average age 75.9 yr) during approximately 8 h of sleep from the sleep heart health study (SHHS) database, and the same subjects recorded 5 yr later. We quantify: 1) the average heart rate (<R-R>); 2) the SD sigma(R-R) and sigma(DeltaR-R) of the heart beat intervals R-R and their increments DeltaR-R; 3) the long-range correlations in R-R as measured by the scaling exponent alpha(R-R) using the Detrended Fluctuation Analysis; 4) fractal linear and nonlinear properties as represented by the scaling exponents alpha(sgn) and alpha(mag) for the time series of the sign and magnitude of DeltaR-R; and 5) the nonlinear fractal dimension D(k) of R-R using the fractal dimension analysis. We find: 1) No significant difference in (P > 0.05); 2) a significant difference in sigma(R-R) and sigma(DeltaR-R) for the Fantasia groups (P < 10(-4)) but no significant change with age between the elderly SHHS groups (P > 0.5); and 3) no significant change in the fractal measures alpha(R-R) (P > 0.15), alpha(sgn) (P > 0.2), alpha(mag) (P > 0.3), and D(k) with age. Our findings do not support the hypothesis that fractal linear and nonlinear characteristics of heart beat dynamics break down with advanced age in healthy subjects. Although our results indeed show a reduced SD of heart beat fluctuations with advanced age, the inherent temporal fractal and nonlinear organization of these fluctuations remains stable. This indicates that the coupled cascade of nonlinear feedback loops, which are believed to underlie cardiac neuroautonomic regulation, remains intact with advanced age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.