Abstract
Fractal geometries are appealing in all applications where miniaturization capabilities are required, ranging from antennas to frequency selective surfaces (FSS) design. Recently, some fractal patches configurations, giving low losses, reduced size, and quite good phase ranges, have been proposed for the design of reflectarray unit cells. This paper reviews existing fractal-based reflectarrays, highlighting their benefits and limitations. Furthermore, a comprehensive analysis of an innovative reflectarray unit cell, using a fractal-shaped fixed-size patch, is presented. The miniaturization capabilities of the Minkowski fractal shape are fully exploited to obtain a compact cell offering quite good phase agility, by leaving unchanged the patch size and acting only on the fractal scaling factor. Experimental validations are fully discussed on a realized 10 GHz0.3λ×0.3λcell. This is subsequently adopted to synthesize various reflectarray prototypes offering single or multiple-beam capabilities over a quite large angular region (up to 50 degrees). Finally, experimental validations on a realized15×15elements prototype are presented to demonstrate the wide angle beam-pointing capabilities as well as a quite large bandwidth of about 6%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.