Abstract
The present work offers an explanation for the variation of the power-law stress exponent, n, with the stress σ normalized to the shear modulus G in aluminum alloys. The approach is based on the assumption that the dislocation structure generated with deformation has a fractal nature. It fully explains the evolution of n with σ/G even beyond the so-called power law breakdown region. Creep data from commercially pure Al99.8%, Al-3.85%Mg, and ingot AA6061 alloy tested at different temperatures and stresses are used to validate the proposed ideas. Finally, it is also shown that the fractal description of the dislocation structure agrees well with current knowledge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.