Abstract
Healthy systems in physiology and medicine are remarkable for their structural variability and dynamical complexity. The concept of fractal growth and form offers novel approaches to understanding morphogenesis and function from the level of the gene to the organism. For example, scale-invariance and long-range power-law correlations are features of non-coding DNA sequences as well as of healthy heartbeat dynamics. For cardiac regulation, perturbation of the control mechanisms by disease or ageing may lead to a breakdown of these long-range correlations that normally extend over thousands of heartbeats. Quantification of such scaling alterations are providing new approaches to problems ranging from molecular evolution to monitoring patients at high risk of sudden death.We briefly review recent work from our laboratory concerning the application of fractals to two apparently unrelated problems: DNA organization and beat-to-beat heart rate variability. We show how the measurement of long-range power-law correlations may provide new understanding of nucleotide organization as well as of the complex fluctuations of the heartbeat under normal and pathologic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.