Abstract
In this study, we illustrate the fractal nature of the wake shed by a periodically flapping filament. Such wake structure is a combination of primary vortex shedding resulting in the von Kármán vortex street, a series of concentrated vortex dipoles formed when the trailing edges of filaments reach their maximum amplitudes and small eddies form along the shear layer connected with the concentrated vortices due to the shear layer instability. The vortex dynamics of the flapping filament are visualized and imaged experimentally using a soap-film flow tunnel with a high-speed camera and a low pressure sodium lamp as a light source. The wake fractal geometry is measured using the standard box-counting method and it is shown that the fractal dimension of the soap pattern boundaries in the wake is D = 1.38 ± 0.05, which agrees well with those measured for fully developed turbulences and other shear flow phenomena. The invariant of the fractality in the wake induced by the flapping filament thus provides another illustration of the geometrical self-similarity and nonlinear dynamics of chaotic fluid flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.