Abstract

We investigate the geometric properties displayed by the magnetic patterns developing on a two-dimensional Ising system, when a diffusive thermal dynamics is adopted. Such a dynamics is generated by a random walker which diffuses throughout the sites of the lattice, updating the relevant spins. Since the walker is biased towards borders between clusters, the border-sites are more likely to be updated with respect to a non-diffusive dynamics and therefore, we expect the spin configurations to be affected. In particular, by means of the box-counting technique, we measure the fractal dimension of magnetic patterns emerging on the lattice, as the temperature is varied. Interestingly, our results provide a geometric signature of the phase transition and they also highlight some non-trivial, quantitative differences between the behaviors pertaining to the diffusive and non-diffusive dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.