Abstract

Soil particle-size distribution (PSD) is an important index for soil classification because it has large influences on soil hydrological characteristics, salinity, fertility, erodibility, nutrient content, swelling/shrinking, and degradation. We present a case study of the fractal characteristics of soil PSD and its relationship with soil properties of gravel-mulched fields in an arid area of northwestern China using single-fractal calculation. Particle size was unimodally distributed within the narrow range of 20–100 μm, with silt as the most common component. Horizontally, silt content was the highest, followed by sand and clay contents. Vertically, clay content increased with depth, while there were no obvious change rules for both silt and sand contents. The volume fractal dimension (D) of PSD ranged from 2.4307 to 2.5260, increased with the content of fine particles but decreased with the content of coarse particles. D was correlated positively with soil-water content and salt content and negatively with bulk density. The saturated soil-water content was strongly correlated negatively with silt content (p < 0.01) and positively with sand content (p < 0.01). The results indicate that D can be a potential indicator of the physical and chemical properties of soil and can also provide a theoretical basis and technical guidance for the effective use and management of the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.