Abstract

Flocculation experiments were performed in a Taylor-Couette reactor in turbulent conditions characterized by the mean shear rate. A sequenced hydrodynamic protocol was applied which consists in low and high shear rates steps allowing to promote respectively aggregation and breakage processes. The particle size distribution and the 3D fractal dimension were determined on line by laser diffraction while morphological parameters were characterized off line using an automated microscope coupled with image processing. After a first aggregation-breakage cycle, the flocs formed by charge neutralization have smaller sizes than during the first aggregation step when the main aggregation mechanism is the charge neutralization whereas coarser but more resistant aggregates can be produced by bridging mechanism. During the flocculation process, high shear rates calibrate the flocs, creating small flocs having a size close to the Kolmogorov microscale. These small flocs serve as bricks to form larger flocs when lower shear rates are applied and a full reproducibility is observed after one or two cycles of the sequence depending on the aggregation mechanism. A clear correspondence was put in evidence between the shear rate conditions and the volume base mean size or fractal dimension of flocs. The morphological fractal dimension, as well as the fractal dimension derived from laser measurements, are in good agreement with the mean trend of the morphological data but cannot represent the whole diversity of floc sizes and shapes. The 3D surface base area and perimeter distributions appear as a promising tool allowing a deeper analysis of the impact of physico-chemical and shear conditions on aggregate properties during a flocculation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.