Abstract

In this work we study the fractal properties of diffusion-limited aggregation (DLA) clusters grown on spherical surfaces. Diffusion-limited aggregation clusters, or DLA trees, are highly branched fractal clusters formed by the adhesion of particles. In two-dimensional media, DLA clusters have a fractal dimension D_{f}=1.70 in the continuous limit. In some physical systems, the existence of characteristic lengths leads us to model them as discrete systems. Such characteristic lengths may result also from limitations in measuring instruments, for example, the resolution of biomedical imaging systems. We simulate clusters for different particle sizes and examine the influence of discretization by exploring the systems in terms of the relationship between the particle size r and the radius of the sphere R. We also study the effect of stereographic projection on the fractal properties of DLA clusters. Both discretization and projection alter the fractal dimension of DLA clusters grown on curved surfaces and must be considered in the interpretation of photographic biomedical images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.