Abstract

It is shown that preferential concentrations of inertial (finite-size) particle suspensions in turbulent flows follow from the dissipative nature of their dynamics. In phase space, particle trajectories converge toward a dynamical fractal attractor. Below a critical Stokes number (non-dimensional viscous friction time), the projection on position space is a dynamical fractal cluster; above this number, particles are space filling. Numerical simulations and semi-heuristic theory illustrating such effects are presented for a simple model of inertial particle dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.