Abstract

Electrochemical techniques and fractal theory were employed to study the corrosion behaviors and pits distribution characteristics on the corroded surfaces of 304 stainless steel exposed in FeCl3 solution. Fractal features of pits distribution over the corroded surfaces were observed and described by the fractal dimension. A 5-8-2 back-propagation (BP) artificial neural network model for the diagnoses of the pitting corrosion rate and pits deepness of 304 stainless steel under various conditions was developed by considering the fractal dimension as a key parameter for describing the pitting corrosion characteristics. The predicted results are well in agreement with the experimental data of pitting corrosion rate and pit deepness. The max relative errors between their experimental and simulation data are 6.69% and 4.62%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call