Abstract

Fractal calculus is very simple but extremely effective to deal with phenomena in hierarchical or porous media. Its operation is almost same with that by the advanced calculus, making it much accessible to all non-mathematicians. This paper begins with the basic concept of fractal gradient of temperature, i.e., the temperature change between two points in a fractal medium, to reveal the basic properties of fractal calculus. The fractal velocity and fractal material derivative are then introduced to deduce laws for fluid mechanics and heat conduction in fractal space. Conservation of mass in a fractal space is geometrically explained, and an approximate transform of a fractal space on a smaller scale into its continuous partner on a larger scale is illustrated by a nanofiber membrane, which is smooth on any observable scales, but its air permeability has to studied in a nano scale, under such a small scale, the nanofiber membrane becomes a porous one. Finally an example is given to explain cocoon’s heat-proof property, which cannot be unveiled by advanced calculus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.