Abstract

Tree graphs such as Cayley trees provide a stage to support the self-organization of fractal networks by the flow of walkers from the root vertex to the outermost shell of the tree graph. This network model is a typical example that demonstrates the ability of a random process on a network to generate fractality. However, the finite scale of the tree structure assumed in the model restricts the size of fractal networks. In this study, we removed the restriction on the size of the trees by introducing a lifetime τ (number of steps of random walks) of walkers. As a result, we successfully induced a size-independent fractal structure on a tree graph without a boundary. Our numerical results show that the mean number of offspring d b of the original tree structure determines the value of the fractal box dimension db through the relation d b — 1 = (n b — 1) -θ . The lifetime τ controls the presence or absence of small-world and scale-free properties. The ideal fractal behaviour can be maintained by selecting an appropriate value of τ. The numerical results contribute to the development of a systematic method for generating fractal small-world and scale-free networks while controlling the value of the fractal box dimension. Unlike other models that use recursive rules to generate self-similar structures, this model specifically produces small-world fractal networks with scale-free properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call