Abstract
We focus on power-law coherency as an alternative approach towards studying power-law cross-correlations between simultaneously recorded time series. To be able to study empirical data, we introduce three estimators of the power-law coherency parameter Hρ based on popular techniques usually utilized for studying power-law cross-correlations – detrended cross-correlation analysis (DCCA), detrending moving-average cross-correlation analysis (DMCA) and height cross-correlation analysis (HXA). In the finite sample properties study, we focus on the bias, variance and mean squared error of the estimators. We find that the DMCA-based method is the safest choice among the three. The HXA method is reasonable for long time series with at least 104 observations, which can be easily attainable in some disciplines but problematic in others. The DCCA-based method does not provide favorable properties which even deteriorate with an increasing time series length. The paper opens a new venue towards studying cross-correlations between time series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.