Abstract
We use the Born model for the energy of elastic networks to simulate ``directed'' fracture growth. We define directed fractures as crack patterns showing a preferential evolution direction imposed by the type of stress and boundary conditions applied. This type of fracture allows a more realistic description of some kinds of experimental cracks and presents several advantages in order to distinguish between the various growth regimes. By choosing this growth geometry it is also possible to use without ambiguity the box-counting method to obtain the fractal dimension for different subsets of the patterns and for a wide range of the internal parameters of the model. We find a continuous dependence of the fractal dimension of the whole patterns and of their backbones on the ratio between the central- and noncentral-force contributions. For the chemical distance we find a one-dimensional behavior independent of the relevant parameters, which seems to be a common feature for fractal growth processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.