Abstract

Fractal and polarization analysis of diffusively scattered light is applied to determine the complex relationship between fractal dimension of structural morphology and concentration of chemically active ingredients in two pharmaceutical mixture systems including a series of binary mixtures of acetaminophen in lactose and three multicomponent blends with a proprietary active ingredient. A robust approach is proposed to identify and filter out multiple- and single-scattering components of scattering indicatrix. The fractal dimension extracted from scattering field reveals complex structural details of the sample, showing strong dependence on low-dose drug concentration in the blend. Low-angle diffraction shows optical "halo" patterns near the angle of specular reflection caused by light refraction in microcrystalline aggregates. Angular measurements of diffuse reflection demonstrate noticeable dependence of Brewster's angle on drug concentration. It is shown that the acetaminophen microcrystals produce scattered light depolarization due to their optical birefringence. The light scattering measurement protocol developed for diffusively scattered light by microcrystalline pharmaceutical compositions provides a novel approach for the pattern recognition, analysis and classification of materials with a low concentration of active chemical ingredients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.