Abstract

Pit morphology of Inconel alloy 600 in sulphate (SO4 2-), nitrate (NO3 -) and bicarbonate (HCO3 -) ion-containing 0.5 M sodium chloride (NaCl) solution was analysed in terms of fractal geometry as functions of solution temperature and anion concentration using the potentiostatic current transient technique, scanning electron microscopy, image analysis and ac-impedance spectroscopy. Potentiostatic current transients revealed that the pitting corrosion is facilitated by the increase in solution temperature, irrespective of anion additives, and that it is hindered by the increase in NO3 - and HCO3 - ion concentration, regardless of solution temperature. Above 60 °C, it was also found that the addition of SO4 2- ions impedes pit initiation, but enhances pit growth. The value of fractal dimension D f of the pits increased with increasing solution temperature and with decreasing NO3 - and HCO3 - ion concentration. Moreover, the value of D f increased above 60 °C with increasing SO4 2- ion concentration. This is caused by the increase in the ratio of pit perimeter to pit area, implying the formation of pits with micro-branched shape due to the acceleration of the local attack in the pits. From the decrease of the depression parameter with increasing solution temperature, it is inferred that the roughness of the pits increased with increasing solution temperature. In addition, the depression parameter was found to increase with increasing NO3 - and HCO3 - ion concentration. But, above 60 °C, in the case of SO4 2- ion addition, the depression parameter decreased with increasing SO4 2- ion concentration. From the experimental findings, the three-dimensional pit morphology is discussed in terms of the values of D f of the pits and the depression parameter, with respect to anion concentration and solution temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.